Thermal Transformation of *cis*- and *trans*-[{Mo(CO)₃H}₂{ μ - η ⁵: η ⁵-C₅H₃(SiMe₂)₂C₅H₃}] into [{Mo(CO)₃}₂{ μ - η ⁵: η ⁵-C₅H₄(SiMe₂SiMe₂)-C₅H₄](*Mo*-*Mo*) Promoted by Hydride Migration

Francisco Amor, Ernesto de Jesús, Pascual Royo,^{*,†} and Amelio Vázquez de Miguel

Departamento de Química Inorgánica, Universidad de Alcalá de Henares, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain

Received January 27, 1995

Introduction

We recently reported¹ the stereoselective synthesis of *cis*- and *trans*-[{Mo(CO)₃H}₂{ μ - η^5 : η^5 -C₅H₃(SiMe₂)₂C₅H₃}] (1) and were interested in studying the attainable pathways, if any, for the interconversion between both isomers. Here we report the results of the thermal transformations observed when solutions of *cis*- and *trans*-1 were heated to 90 °C leading to [{Mo-(CO)₃}₂{ μ - η^5 : η^5 -C₅H₄(SiMe₂SiMe₂C₅H₄}] (2). The preparation of **2** by reaction of (C₅H₅SiMe₂SiMe₂C₅H₅) with Mo(CO)₆ has been previously reported.²

Experimental Section

All manipulations were carried out under argon. Toluene and hexane were dried and distilled from sodium. The ¹H and ¹³C NMR spectra were recorded at 499.83 and 125.71 MHz, respectively, on a Varian Unity 500 spectrometer; chemical shifts, in ppm, are positive downfield relative to external SiMe₄. Complexes *cis*- and *trans*-1 were prepared according to ref 1. Complex *trans*-1-*d*₁ was obtained as *trans*-1 but in THF-*d*₈ using acetic acid-*d*₁ for the preparation.

Preparation of 2. A solution of cis-1 or trans-1 (0.78 g, 1.3 mmol) in toluene (15 mL) is stirred and heated at 90 °C for 5 days in an ampule sealed in vacuo. The color of the solution changes from pale yellow to red. After filtration, the solution is evaporated to dryness to give a microcrystalline red solid, which was washed with hexane (10 mL), dried in vacuo, and characterized as 2 (0.70 g, 90%, mp 179-180 °C). Anal. Calcd for C₂₀H₂₀O₆Si₂Mo₂: C, 39.7; H, 3.3. Found: C, 40.2; H, 3.4. MS: m/e 604 (M⁺). IR (THF): v(CO) 2000 s, 1928 s, 1897 s. ¹H NMR (C₆D₆): δ 5.00 (AA' part of an AA'BB' spin system, 1 H, C₅ H_4 , H_{β}), 4.68 (BB' part of an AA'BB' spin system, 1 H, C₅H₄, H_{γ}), 0.63 (s, 3 H, SiMe₂). H_{β} and H_{γ} were assigned by a NOE difference experiment with saturation of the Me2Si 1H resonance (NOE effect for $H_{\beta} \approx 4\%$). ¹³C{¹H} NMR (C₆D₆): δ 230.2 (s, CO trans to metal-metal bond), 226.5 (s, CO cis to metal-metal bond), 110.6 (s, C_5H_4 , C_{α}), 96.5 (s, C_5H_4 , C_{β} ; from ¹³C, ¹J(C-H) = 177 Hz), 94.1 (s, C_5H_4 , C_{γ} ; from ¹³C, ¹J(C-H) = 176 Hz), 7.8 (s, SiMe₂; from ¹³C, ¹J(C-H) = 121 Hz). C_{β} and C_{γ} were assigned by selective irradiation of H_{β} and H_{γ} resonances.

Results and Discussion

Initial experiments were carried out in sealed tubes by heating gradually C_6D_6 solutions of *cis*- and *trans*-1, and the reactions were monitored by ¹H NMR spectroscopy. The ¹H NMR spectrum of *cis*-1 shows two singlets at -0.02 and 0.46 ppm (Me₂Si), one singlet at -4.94 ppm (Mo–H), and two groups of resonances at 4.78 and 5.02 ppm (A and BB' parts of the Cp ABB' spin system) and remains unchanged at temperatures below 90 °C. At this temperature (Scheme 1), all the resonances

Scheme 1

Scheme 2

due to *cis*-1 decrease, while resonances due to a new complex 2 appear as one singlet at 0.63 ppm (Me₂Si) and two groups of resonances at 4.68 and 5.00 ppm (AA' and BB' parts of the Cp AA'BB' spin system). The overall transformation proceeds quite slowly and requires 5 days at 90 °C to be completed. Complex *trans*-1 is also transformed into 2 by a similar procedure, without significant differences in time or temperature. Complex 2 was isolated in 90% yield when the above reaction was carried out at a preparative level and has been completely characterized.

The formation of **2** from either *cis*-**1** or *trans*-**1** implies formally the rupture of two Si-C bonds, one from each cyclopentadienyl group, and the formation of two C-H bonds one Si-Si bond, and one Mo-Mo bond. It is well-known³ that some hydride complexes of the type [CpMo(CO)₃H] (Cp = η^5 -C₅H₅, η^5 -C₅Me₅, etc.) decompose to give the dimer [CpMo(CO)₃]₂(*Mo*-*Mo*) and H₂ when treated thermally. However reductive elimination of H₂ and formation of [{Mo(CO)₃}₂-{ μ - η^5 : η^5 -C₅H₃(SiMe₂)₂C₅H₃}](*Mo*-*Mo*)⁴ was not observed for complex **1**.

Labeling studies provided more information on this reaction. When deuterated *trans*- $1-d_2$ (Scheme 2) is thermally decomposed in C₆D₆, the ¹H and ¹³C{¹H} NMR spectra of the solid obtained ($2-d_2$) are analogous to those of **2** except for the cyclopentadienyl resonances. The relative intensity of the ring proton resonances observed in the ¹H NMR spectrum at 5.00

[†]Email: proyo@inorg.alcala.es.

Amor, F.; Gómez-Sal, P.; de Jesús, E.; Royo, P.; Vázquez de Miguel, A. Organometallics 1994, 13, 4322-4237.

⁽²⁾ Zhou, X. Z.; Yiw, R. Z.; Wang, H. G.; Yao, X. K. Acta Chim. Sin. 1992, 50, 930–936.

⁽³⁾ Davis, R.; Kane-Maguire, L. A. P. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Able, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Vol. 3, p 1149.

⁽⁴⁾ Amor, F.; de Jesús, E.; Pérez, A. I.; Royo, P.; Vázquez, de Miguel, A. Organometallics 1996, 15, 365–369.

(H_{β}) and 4.68 (H_{γ}) ppm is 1:1 for **2** but 1:2 for **2**-*d*₂, in agreement with a structure for **2**-*d*₂ in which the deuterium atoms are located in β positions (Scheme 2). In the ¹³C{¹H} NMR spectrum, the resonance found in **2** at 96.5 ppm (C_{β}) appears in **2**-*d*₂ as a group of resonances assigned to the deuterated (¹*J*(CD) \approx 25 Hz) and undeuterated β -carbons.

The partial mechanism proposed in Scheme 2 can account for the experimental observations. According to this mechanism, the formation of the metal-metal bond (step iii) is proposed to be subsequent to the ring transformation (steps i and ii), and therefore no significant difference is observed between the transformation of *cis*-1 and *trans*-1. The first step (i) is the migration of one hydrogen from the metal to one of the silicon-bonded carbons of the cyclopentadienyl ring, in agreement with the location of the deuterium in the β position in 2-*d*₂. This first step is similar to other metal-to-ring migrations reported in the literature⁵ and implies the formation of a species with one 18e and one 16e Mo center. The C-Si bond breaking and Si-Si bond coupling could be induced by the metal-to-ring migration of the second deuterium (step ii). Step ii implies the formation of a 17e complex and could occur in a concerted way with step iii, in which the 18e are attained, lowering the activation energy of the process. Probably, metal-to-ring hydrogen transfer and C–Si bond breaking are also involved in ring desilylation reactions of monobridged C_5H_4 -SiMe₂C₅H₄ complexes through the formation of the hydride [{Mo(CO)₃H}₂{ μ - η ⁵: η ⁵-C₅H₄SiMe₂C₅H₄}] proposed as an intermediate.⁶

Conclusion

In this paper, we have shown that hydrogen metal-to-ring migration is another process to take into account to explain the thermal behavior of some cyclopentadienylmetal hydride complexes. In fact, ¹H and ¹³C NMR studies prove that thermal activation of deuterated *cis*- and *trans*-[{Mo(CO)₃H}₂(μ - η ⁵: η ⁵-C₅H₃(SiMe₂)₂C₅H₃]] (1) occurs only *via* metal-to-ring migration giving [{Mo(CO)₃}₂(μ - η ⁵: η ⁵-C₅H₄(SiMe₂SiMe₂)C₅H₄]] (2).

Acknowledgment. We gratefully acknowledge financial support from the Comisión Asesora de Investigación Científica y Técnica (ref no. PB92-0178-C).

IC950091E

⁽⁵⁾ Donovan, B. T.; Russell, P. H.; Kowalski, A. S.; Trujillo, H. A.; Rheingold, A. L. Organometallics 1993, 12, 1038–1043 and references therein. Jones, W. D.; Kuykendall, V. L.; Selmeczy, A. D. Organometallics 1991, 10, 1577–1586 and references therein.

⁽⁶⁾ Heck, J.; Kriebisch, K.-A.; Mellinghoff, H. Chem. Ber. 1988, 121, 1753-1757.